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Absiract

We present, in this paper, a new method for
calculating the wake potential of a bunched beam of
arbitrary charge distribution, directly from the wake
potential of a shorter bunch, by using orthogonal
polynomial expansions. Combined with the table-look-up
technique, this method leads to an effective computation
scheme for repetitive evaluation of wake potentials of
different charge distributions under the same boundary
conditions.*

I. INTRODUCTION

Theoretically, the wake potential of a bunched beam
of arbitrary charge distribution can be calculated by using
the wake function of a point charge as a Green function
(1). In reality, except for a few very simplified geometrics,
the wake function of a point charge is impoasible to
obtain analytically. More difficulties emerge when one
tries to compute the wake function (clelta function wake)
numerically, because of the singularity in the time domain
and the infinite number of resonances in the {requency
donwin. Although several approximations in the time
doniin have been proposed [2,3,4], it is not clear that
these approximuations can give satisfactory results for all
cAses.
The difficulty of evaluating the wake function of a
point charge is avoided by computing the wake potential
of n nonsinguiar charge distribution of cxtended dimension.
A number of computer progranw have heen developed for
calculating the wake potentials of charged-particle bunches
in various geometrien [5,6,7). Nonethelems, cven with the
moat advanced computers, a wake potential calculation
still requiren a significant amount of computer time. lence,
it in not practical to use these programs to calculate wake
potentials repeatedly in a simulation program for heam
stability or bheanr-heam interaction in aceclerators, A
conventional method for a fast computation in to ealeulate
the effective impedance in the frequeney domain from
the resonant moden of a structure, and then to Fourier-
tranaform the resulta to the tine domain [8]. Clearly, to
use this method, one niat know the modes up to very
high frequencies 1t in important to know the impedan. o
of a structure hefore it s built; therefore one has to
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depend on the results from computations. In attempting
tu calculate the impedance numerically, one faces the
same difficulties mentioned earlier. Trying to “unfocld”
the effective impedance of a bunch of finite length does
not work in practice because of the extremely large weight
factors where the eflective impedance is small; e.g., for
a Gaumian distribution, one would have to multiply the
effective impedance with the weight factor exp(+w?o?).
Thus, a better scheme for rapid computation of wake
potentials is required.

As will be discussed below, orthogonal polynomia’
expansions enable the wake potential of a bunch witk
arbitrary distribution to be calculated directly from a
known wake potential of a short bunch. This method is
similar to the Green function method; for any specific
geometry, one needs to compute the wake potential of a
short bunch only once. The wake potentials of each terin
in the expansion then can be obtained by (numerical)
integrations. One may construct tables from the results
and use the “table-look-up” technique [8] to increase the
computation specd.

II. EXPANSIONS OF WAKE POTENTIALS

It is known that the wake function of a point charge
(;(z,2') can be used as a Green function to calculate
the wake potential Wp(z) of a bunch with a charge
distribution .[(z). If the wake function ia a function
of the difference of z and =’ only, as in the case of an
inflnitely long beam pipe with open boundary conditions,
the relation among Wye(z), G(z,2’') and F(z) can be
writter. an

Wp(2) = /m G(z - 2")F(2')de'

~ny

= /m Q) F(2 - 2')de' (1)

ng
where it is understomd that G(y) = 0 for y < 0. In this
paper we shall limit our discumions to the eae for which
Eq.(1) holds. One ean infer from Fq.(1) that if W,(#) is the
wake potential of & known function g(r), and if a charge
distribution F(y) ean he expressed as a convolution of g(r)
and sonw Tunction f(r), ie.,

I"(v)-—/ firdely <Mr (2)



then one can calculate the wake potential Wg(t) of the
distribution F(y) by using the relation

W,(t)f(y ~ t)dt , 3)

Wr(y) =

where

W, (t) = / G(z')g(t ~ 2')dz" . (4)

Our study here will be focused on those cases in which g(z)
is 8 simple function and in which the solutions of Eq.(2)
exist for a given F(y).

For an arbitrary distribution F(y), it is usually
impossible to find a closed form for the solution, but one
can expand it [9] into orthogonal polynomials O,(y), i.e.,

F(y) = C(y)zanOn(u) Za,sn(y). (5)

n=0

where S,(y) = C(y)On(y). The computing of the wake
potential Wy(t) is then transformed into finding the wake
potential due to the functions 5,(y). To relate the right-
hand side of F.q.(5) to the known fu' ‘ion g(z), we use the
convolution theorem of Fourier tranaformation to express

Sn(y) as

Sa) = [ Qu(@oly - 2)iz ®)
where Q,(7) is given by
Sn
Q"(r) 2', g((ww)) Iwr‘h , (7)

where S,(w) and §(w) are the Fourier teansforms of S, (y)
and g(y), respectively. Subatituting Eq.(6) into Eq.(5) and
using Fqs.(2) - (1), we derive

We(r) = Lu,./ Qu(r = )W, (t)dt . (8)

n=0

III. EVALUATION OF SPECIFIC CASES

We now consider nome specifie cases, using the resulis
dencribed in the nrevious seetion.

A. g(y) ir a Gauasian Distribution/10,11)

In this cnwe, it in advantageous to expand  (he
function F(y) imto Hermite polynomials, thas ('(y) =
(V2re) "oxpl w?/(207)], On(y) H,.[u/(V2e) md
gl A (V2ray) Vexpl p?/(2e1)). Perforiming  the
neceanary Fourer teanaformations (11 lewds to

o\n . zd
Q"(=)=-\,/2LTO’3(;—2) Hn('\/_;;;)exP(_m) ] (9)

where 03 = 0? — 7. Substituting Eq. (9) into Eq. (8)

yields the wake potential of the (arLitrary) distribution F:

Wr(z) = \/2l1ra, Edn (‘%)"

< [~ Wit (252) exp[-Eg
- ’ (10)

where

W,(t) = (11

/ G(:’)exp[ ]d !
is the wake potential of a bunch having a Gaussian charge
distribution of standard deviation o, < o. Eq.(10) has
recently been applied to build the wake potential tables in
a beam stability simulation program [12).

When F(z) is a Gaussian function, then the
expansion coeflicients a, = 0 (except when n = 0).
Equation (10) then l-ads to the well-known result that
the wake potential of the longer Gaussian bunch can be
expressed as a superposition of the waxe potential of the
shorter Gaussian bunch, as [13]

o Y |
We(z) = Wlm;/.m W,(n)exp[—(.T’-;)—lda . (12)

We note again that the expansion of wake potential
in terma of Hermite polynominls has been used in the beam;
stability simulation in conjunction with some point-charge
Green functions or impedances [8,14,15).  The method
described here differs from previous ones in that it uses
the known wake potential of a Gaussian bunch inatead of
the Green function or impedance (which are in general
diflicult to obtain),

B. Dintributiona F(y)
extenta.[11]

and g(y) have finite

We connider a specinl distribution function,

g(r) = [0(r + 1) =02 = D)/C2A) (13)

where #(r) is the Heaviside step function and 1 is the
halfl length of the short. buneh,  When F(y) has n finite
extent. of hnll length L, one ean expand it in ternw of
orthogonal polynominls defined on a unit inteeval, ie,

Op(y) = Ou(p/l) for [(p/1)] < 1wl Ouly) - 0
clsewhere. It can he shown, by applying the residue
theorem, that [11]

where



’ M
@ue) =t | - sal(e/0) - Com+ 1)/ L)

g (14)
S Sal(z/L) + (2k + 1)(:/1,)]} .
k=0

where M is the largest integer for (2M + 1)l < (L + z),
K is the largest integer for (2K + 1)l < (L - z), and
Sa(y) = C(y)On(y/L) is defined in the same range as that
of On(y/L)

As an :xample, we consider a case in which C(y) =
y?—1, Oa(y,'L) is the Legendre polynomial P, (y/L), and
(L/3) < 1 < (2L/3). Applying Eqs. (8) and (14), we find
that

Wr(z) = f:(“?f) /_: W,(t)Ba(z - t)dt ,  (16)

where

[ (24 n)[2) Pa(21) + O(L + 23)23Pn(22))
—n[Paci(21) + (L + 22) Pa—:1(22)),
for z>(L-1) ,

(24 n)|[z1 Pa(21) = 22 Pa(a3)]
=n[Pasi(21) = Paci(z3))],
for (I-L)y<z<(L-1),

Bn(z) = ¢

(24 n){[2aPn(23) + 0(L. — £4)74Pn(24)]
—n[Pa=1(23) + 0(L = 24) Pa_1(z4)),
{ for z<(l-1) ,

(16)

rnsrz-lra=r-Mzyg=z+41,r4=x+ 3, and

mf
Wglt) = ;l;/ r(-'(.\-')[0(!—.\r'+f)—0(f--.\'—!)].da: (17)

in the wake potentinl due to the short

“reciangular” dintribution.

pulse  of

IV. CONCLUSIONS

For any houndary conditiona for which one ean
obtain the wake potentinl of a short hunch, Fgn.(3)-(8)
allow un to enlenlnte the wake potentinl of a longer bunch
with arhitrary charge distribution. Compared wit other
methodn, the method presented here han the ndvantages
better accurncy and higher efliciency. One needs to use
the time conmuming wake polential programm only onee;
the resultn apply to any other function.  This feature
in enpecinlly useful in A beam stability or beam-heam
interaction sinulation, because the computing speed can

be increased by using tliis method in conjunction with the
table-look-up technique.
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